yesterday's assignment: 11.4 \#2, 5, 7, 9, 13, 15

$$
21,23,35-41 \text { odd }
$$

Show work!

Label each part that you identify.
A rough sketch may be helpful for \#35-41odd.

21-28 Graphing Shifted Hyperbolas An equation of a hyperbola is given.
11.4 \#21
(a) Find the center, vertices, foci, and asymptotes of the hyperbola.
(b) Sketch graph showing the hyperbola and its asymptotes.

21-28 Graphing Shifted Hyperbolas An equation of a hyperbola is given.
11.4 \#21 continued
(a) Find the center, vertices, foci, and asymptotes of the hyperbola.
(b) Sketch a graph showing the hyperbola and its asymptotes.
21. $\frac{(x+1)^{2}}{9}-\frac{(y-3)^{2}}{16}=1$

$$
a^{2} \quad b^{2}
$$

$a=3$

$$
b=4
$$

Fool $c^{2}=a^{2}+b^{2}$

$$
\begin{aligned}
& C^{2}=9+16 \\
& C^{2}=25 \\
& * C=5 \begin{array}{c}
\text { identify } \\
\text { graph } \\
\text { or }(-1 \pm 5,3) \\
\operatorname{Focs}(4,3) \\
\operatorname{Fr}(-6,3)
\end{array}
\end{aligned}
$$

and its asymptotes.

$\operatorname{Vertices}(2,3)$
$(-4,3)$

Asymptotes on next slide \downarrow

21-28 Graphing Shifted Hyperbolas An equation of a hyperbola is given.
11.4 \#21 continued
(a) Find the center, vertices, foci, and asymptotes of the hyperbola.
(b) Sketch a graph showing the hyperbola and its asymptotes.
21. $\begin{aligned} & \frac{(x+1)^{2}}{9}--\frac{(y-3)^{2}}{16}=1 \\ & b=4\end{aligned}$

Asymptotes

$$
y= \pm \frac{b}{a} x
$$

$$
\begin{aligned}
& y= \pm \frac{4}{3} x \\
& \text { If centered }
\end{aligned}
$$

We have: $\left.\left(y-k_{3}^{k}\right)= \pm \frac{4}{3}(x+1)\right)$
center
and its asymptotes.

$\begin{array}{cc}(-1,3) & y= \pm \frac{4}{3}(x+1)-3 \\ h & y=\frac{4}{3} x+\frac{4}{3}-3 \text { and } y=-\frac{4}{3} x-\frac{4}{3}-3\end{array} \quad(-4,3)$ denominator

21-28 Graphing Shifted Hyperbolas An equation of a hyperbola is given.
(a) Find the center, vertices, foci, and asymptotes of the hyperbola.
(b) Sketch a graph showing the hyperbola and its asymptotes.
21. $\frac{(x+1)^{2}}{9}-\frac{(y-3)^{2}}{16}=1$

11.4 \#21

Answer \downarrow

(a) $C(-1,3)$

$$
\begin{equation*}
V_{1}(-4,3), V_{2}(2,3) \tag{b}
\end{equation*}
$$

asymptotes $y=\frac{4}{3} x+\frac{13}{3}$ and $y=-\frac{4}{3} x+\frac{5}{3}$

$$
F_{1}(-6,3), F_{2}(4,3)
$$

15. $(y+5)^{2}=-6 x+12$

Answer \downarrow

(a) $V(2,-5)$
$F\left(\frac{1}{2},-5\right)$
directrix $x=\frac{7}{2}$
(b)

Be sure to plot all key points:
 vertex, focus, focal diameter, and the directrix line.

Book graph is the basic idea...your graph should include more accurate values!

